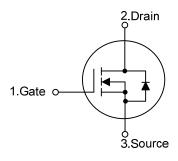


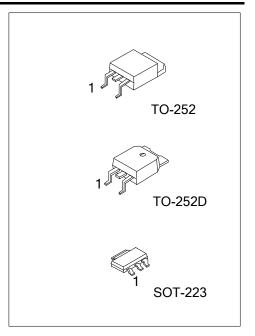
UNISONIC TECHNOLOGIES CO., LTD

6N10 **Power MOSFET**

6.5 Amps, 100 Volts **N-CHANNEL POWER MOSFET**

DESCRIPTION

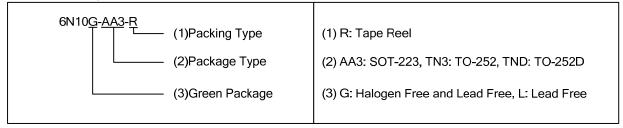

The UTC 6N10 is an N-Channel enhancement mode power FET providing customers with excellent switching performance and minimum on-state resistance.

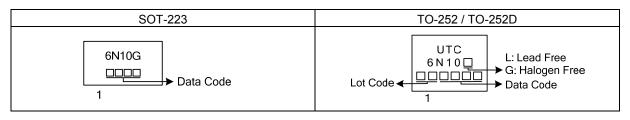

The UTC 6N10 is generally applied in voltage applications, such as DC motor control, audio amplifier and high efficiency switching DC/DC converters.

FEATURES

- * $R_{DS(ON)}$ < 0.2 Ω @ V_{GS} =10V, I_{D} =3A
- * Fast switching
- * Improved dv/dt capability

SYMBOL




ORDERING INFORMATION

Ordering Number		Doolsons	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
-	6N10G-AA3-R	SOT-223	G	D	S	Tape Reel	
6N10L-TN3-R	6N10G-TN3-R	TO-252	G	D	S	Tape Reel	
6N10L-TND-R	6N10G-TND-R	TO-252D	G	D	S	Tape Reel	

Pin Assignment: G: Gate D: Drain S: Source

MARKING

www.unisonic.com.tw 1 of 4

■ **ABSOLUTE MAXIMUM RATINGS** (T_C =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DS}	100	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain Current	Continuous	I _D	6.5	Α	
	Pulsed	I _{DM}	8.0	Α	
Repetitive Avalanche Energy (Duty Cycle ≤1%)	L=0.1mH	E _{AR}	1.25	mJ	
Power Dissipation	SOT-223		2.2	14/	
	TO-252/TO-252D	P_D	16	W	
Junction Temperature		Τ _J	+150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

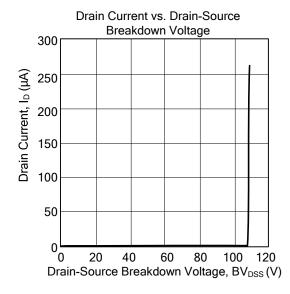
■ THERMAL CHARACTERISTICS

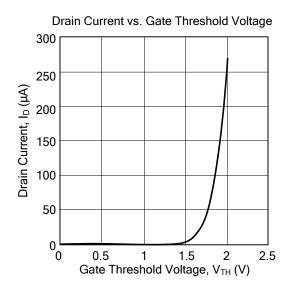
PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	SOT-223	0	55	°C/W	
	TO-252/TO-252D	θ_{JA}	100		
Junction to Case	SOT-223	0	12	°C/W	
	TO-252/TO-252D	θις	9JC 7.5		

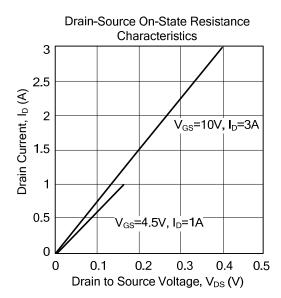
Note: θ_{JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

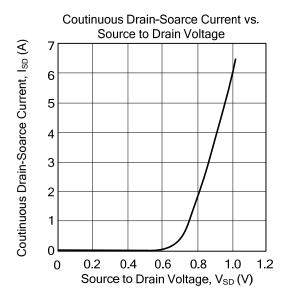
 θ_{JC} is guaranteed by design while θ_{JA} is determined by the user's board deign.

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise noted)


PARAMETER		SYMBOL	TEST CONDITIONS MI		TYP	MAX	UNIT			
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage		BV_{DSS}	I _D =250μA, V _{GS} =0V	100			V			
			V _{DS} =100V, V _{GS} =0V			1	μA			
Drain-Source Leakage Current		I _{DSS}	V _{DS} =100V, V _{GS} =0V, T _J =125°C			50	μA			
			V _{DS} =100V, V _{GS} =0V, T _J =150°C			250	μA			
Gate- Source Leakage Current	Forward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA			
	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA			
On-State Drain Current (Note 2)		I _{D(on)}	V _{DS} =5V, V _{GS} =10V	8.0			Α			
ON CHARACTERISTICS										
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$			3.0	V			
			V _{GS} =10V, I _D =3A		0.150	0.200				
Static Drain-Source On-State Re	sistance	Б	V _{GS} =10V, I _D =3A, T _J =125°C			0.350	0			
(Note 2)		$R_{DS(ON)}$	V _{GS} =10V, I _D =3A, T _J =150°C			0.450				
			V _{GS} =4.5V, I _D =1.0A		0.160	0.225	5			
Forward Transconductance (Note 2)		g FS	V_{DS} =15V, I_D =3A		8.5		S			
DYNAMIC PARAMETERS (Note	e1)									
Input Capacitance		C_{ISS}			320		pF			
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		80		pF			
Reverse Transfer Capacitance		C_{RSS}			17		pF			
SWITCHING PARAMETERS				_	_	_				
Turn-ON Delay Time (Note3)		t _{D(ON)}			28	58	ns			
Rise Time (Note 3)		t_R	V_{DD} =30V, R_L =7.5 Ω , I_D =0.5A,		30	60	ns			
Turn-OFF Delay Time (Note 3)		$t_{D(OFF)}$	V_{GEN} =10V, R_G =25 Ω		148	178	ns			
Fall-Time (Note 3)		t_{F}			52	82	ns			
Total Gate Charge (Note 3)		Q_G	\\ _F0\\ \\ _40\\ _42\		27	75	nC			
Gate to Source Charge (Note 3)		Q_GS	V _{DS} =50V, V _{GS} =10V, I _D =1.3A I _G =100μA		2.4		nC			
Gate to Drain Charge (Note 3)		Q_GD	-100μA		6.8		nC			
SOURCE- DRAIN DIODE RATIN	NGS AND CH	ARACTERIS [®]	TICS (T _C =25°C)	_	_	_				
Maximum Pulsed Drain-Source Diode		I _{SM}				8.0	_			
Forward Current						0.0	Α			
Drain-Source Diode Forward Voltage (Note 2)		V_{SD}	I _F =6.5A, V _{GS} =0V		0.9	1.3	V			
Reverse Recovery Time		t_{RR}	I _F =6.5A, di/dt=100A/μs		35	60	ns			


Notes: 1. Guaranteed by design, not subject to production testing.


^{2.} Pulse test; pulse width ≤300 ≤µs, duty cycle ≤2%.


^{3.} Independent of operating temperature.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.